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The theological model of a liquid with heredity is used to analyze experimental re- 
suits on normal stress relaxation in mercury. A low end estimate of viscosity at 
low frequencies is obtained. 

A model of a viscous compressible liquid with heredity, generalizing the linear-viscous 
Navier--Stokes model, was proposed in [I]. This model has been employed to describe a liquid 
with large volume relaxation time. In the present study the theory of [i] will be used to 
describe behavior of liquid mercury containing fine air bubbles. For rapid volume deforma- 
tions of the mixture, system equilibrium is disrupted as regards the processes of solution and 
heat exchange between the components, which manifests itself macroscopically by the appearance 
of relaxation processes in the liquid, i.e., heredity. 

The fundamental relationships of [i] will be presented below in slightly changed nota- 
tion. 

We assume that the stress tensor in a liquid particle in a fixed Cartesian coordinate 
system at the time to can be represented in the form 

/ i  (to) = - -  p (~o, To) 8 ~i + ~J (to), ( 1 )  

where po = p(to), To = T(to) are the density and temperature in the particle at the time to; 
p = p(p, T) is the pressure; the viscous stress tensor TI3 depends on Po and the values of 
the temperature T and the deformation rate tensor eij = I/2(vi, j + vj, i) in the particle at 
all times preceding to: 

T ~i (,to) = T ~f [Po, r (t < to), ehz (t < to)l. (2) 

It will be assumed that.if at t < to T = T(t) = To and ekZ = 0, then T IJ (to) = 0. We intro- 
1 

duce the notation ~ = e., S.. =--e.. -- (i/3)~ .. Let the liquid be isotropic, while func- 
a. x 1 i3 

tional (2) is a linear integr~l operator of 8 = dT/dt and eij. Then because of isotropicity, 
to specify Eq. (2) three kernels K i = Ki(Po , To, t), i = i, 2, 3 are sufficient: 

to to to 
l" - ~ i ( t o ) = 8  *i ~KI(DO, To, to--t) e(t)dt + 2 f K2(po, To, t 0 - - t )  s ~i(t) dt +8iJ j K3(po, To, to--t) O(t)dt. (3)  

- - o o  - - o o  - -oo  

It should be noted that Eq. (3) is of limited applicability. In the general case of non- 
linear viscoelasticity in place of the tensor e.. in Eqs. (2), (3), we must use the tensor 

. m i" 
r (where e~= ms the finite deformation tensor ~3, 4]). Moreover in the expression for T J 
t~ms nonlinear in e=~ may appear. It can be shown that the general case leads to Eq. (3) for 
small deformations o~~ media with sufficiently short relaxation times. 

Integration over time in Eq. (3) is performed for a fixed liquid particle. The kernels 
K i = Ki(0 , T, t), i = i, 2, 3 are in fact defined for t ~ O, however it is convenient to pre- 
define them, taking Ki(0 , T, t) = 0 at t < 0. We may then take the upper integration limit 
in Eq. (3) equal to infinity. For brevity, we will omit the dependence of K. on p and T be- 
low. l 

Following [2], we require that for cyclical processes, where p + p~, T § T,, eij + 0 as 
at t § •176 
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I' ,r~i (t) e~; (t) dt >/0 ,  (4) 
__co 

which implies compatibility of Eq. (3) with thermodynamics. Since the functions 0 = 0(t) and 
e~ = e~4(t) can vary over wide limits, inequality (4) imposes definite limitations on the 
possible xor of the~kernels K i = Ki(t). If we transfer from the kernels K i = Ki(t) to their 
Fourier transforms K i = Ki(m), then Eq. (4) reduces to a system of inequalities 

[ if (~)[z Re K~ (@ &o >~ 0, [ [g  (@l 2 Re K2 (w) d~ >~ 0, (5) 
b b 

.[ Re If* (@ h @) K~ (a)] d~ >~ 0. (6) 
0 

Here f(0)= g(0) = 0, and in the remaining expressions the complex functions f, g, h are 
arbitrary. It is clear that Eq. (6) can be satisfied only if K3 = 0. Inequality (5) can be 
satisfied, for example, by taking 

+oo A~ 
Kj (@ = ~ , -c,, > -r.+~ > 0, 

~=o 1 +io3%, 

+= A{, _,,~,, 
A~>~0, K j ( t ) = X "  e , i = 1 ,  2, 

(7) 

which implies the presence of a countable relaxation time spectrum. The quantities Af, T n 
depend on p and T. 

As can easily be seen, the model of Eqs. (I), (3), (7) is a generalization of the Navier-- 
Stokes model of a linear-viscous liquid. In fact, for slow processes when all parameters 
within the particle change with characteristic times much longer than ~o, Eq. (i) transforms 
to 

p~ /=  - -  p (p, T) 6~: + ~ (p, T) ~6~: --k 2~]~ (p, T) d:, 

+~ +~ 

~ 0  n~O 

where ~v, n s are coefficients of liquid volume and shear viscosity. 

Let the layer of liquid described by the model of Eqs. (i), (3), (7) be at rest at t ! 0, 
while at t > 0 its thickness Z = ~(t) changes from lo = l(0) to Z(At) = lo + AZ, with the li- 
quid temperature remaining constant and equal to To, while the density changes from Po = p(0) 
to Pl = p(At). At t ~ At the normal stress on the layer surface has the form 

~t ( 4 ) i(.r) d.c ' (t) ---- - -  p~ + , KI (t - -  v) + ~ K2 (t - -  -r) l ('0 

p~ = p 6% To), O~ = polo/(& + At). 
( 8 )  

For AZ/lo << I and t, To >> At Eq. (8) reduces to 

o(t)=__po_+_c~9 ~ Al I ( 4 9)e_tl~ o Al 
To + ~:o A~ + ~ A6 to ' (9) 

o Op 
where Po=P(Po, To), c ~ = ~ p  (po, To) In Eq. (9) only the dominant exponential remains. 

Thus observation of the normal stress relaxation process permits determination of To and 
the quantity n = Ao ~ + (4/3)Ao, thus allowing estimation of a lower limit for the volume viscosity 
n v �9 
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Such an experiment was performed for mercury containing air in the form of fine bubbles 
using Leutert (Federal Republic of Germany) equipment containing a piston pump and reference 
manometer at I02 MPa. The mercury mass was 2.06 kg, with the ratio of air mass to mercury 
mass not exceeding 4.5.10 -7. The specimen was subjected to rapid loading and unloading over 
the pressure range 0.1-70 MPa at a temperature T = 289 K. After a rapid change in mixture 
volume normal stress relaxation was observed and values of ~i' ti' i = i, ..., N were record- 
ed. For an arbitrary set of three pairs of oi, t~ the relaxation time To was �9 calculated, 
which was then averaged over all possible sets. ~hen the parameter ~ and the equilibrium 
pressure p were found by minimization of the function 

N ( hal 
F=F(~I,  P)~Ze%/~~ (~i-t-P-- Tolo 

i = I  

As a result it was found that To = 12.(1 • 0.08) sec, ~ = 2.108(1 • 0.5) Pa.sec. Within the 
limits of experimental accuracy To and ~ did not depend on pressure. Since ~ for mercury un- 
doubtedly exceeds 1.6.10 -3 Pa.sec [5], we obtain the estimate n > i0 s Pa.sec. This severely 

�9 --S V ~ , 

contradicts the value ~v = 9.2 i0 Pa.sec, calculated from the known ultrasound absorptlon 
coefficient a in mercury [5]: 

1 ( 4 )  10_1~ sec,/m" 
a / ~  = 2c~p0 ~lv + - ~  ~ = 2,7- 

A simple explana t ion  of t h i s  apparent  c o n t r a d i c t i o n  i s  tha t  i n  the model considered in  
the p resen t  study 

A 1 4 2 

In the latter sum, at frequencies m ~ i0 ~ Hz only terms with T i ~ 10 -6 sec produce a 
contribution, while the contribution of the term ~/[i + (~o) 2] is strongly suppressed. 

From the physical viewpoint the great difference in results of volume viscosity measure- 
ments at low and high frequencies is related to the fact that at low frequencies the dominant 
contribution to the measured quality is produced by processes of transport through bubble 
bounda=ies, while at high frequencies a significant role is played only by hydrodynamic pro- 
cesses near the bubbles. 

We will note that apparently the first theoretical study which indicated that air bubbles 
may increase the effective volume viscosity of a liquid was that of Taylor [6], in which, 
however, relaxation processes were not considered. 

NOTATION 

t, to, t i, time; P,.0o, D~, density; T, To, T:, temperature; pij, stress tensor; T ij, 
viscous stress tensor; ~13, Kronecker symbol; v., flow velocity components; e~=, deformation 

1 & �9 
rate tensor; s.., deviator portion of deformation rate tensor; ~v' n_, volume And shear vls- 
cositles; m, frequency; T_, relaxatlon t~nes; ~, ~ " ultrasound absorptlon coefflclent; Ki, ker- 
nals characterizing liquid~relaxation; A i, weight coefficients characterizing contribution 

�9 n . 

of n-th relaxation process; 8, rate of change of temperature; f, g, h, arbitrary functions 
of frequency; co, isothermal speed of sound at low frequency; o, oi, normal stress; Z, Zo, 
liquid layer thickness; 51, change in layer thickness; At, time increment; ~, phenomenological 
coefficent with dimensions of viscosity; p, po, p~, pressure. 
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